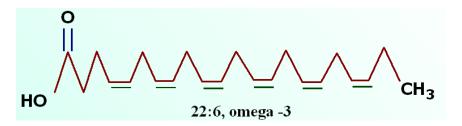


Nutrition | Brain | Cognition

Wyeth Nutrition

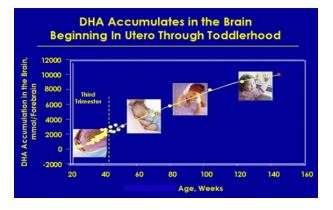

Nutrition and brain development (DHA, choline & lutein)

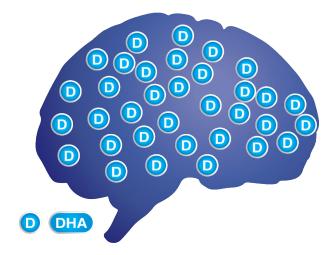
October 2019 GM

Presentation overview

- DHA, lutein and Choline
 - In breast milk
 - In brain and eye
 - Scientific evidence

DHA in breast milk

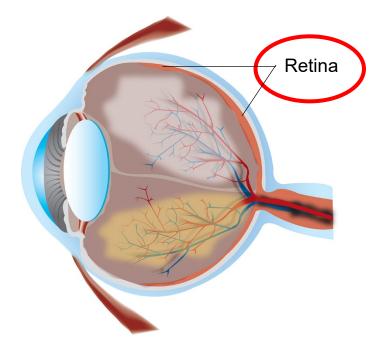



- An omega-3 long-chain polyunsaturated fatty acid, DHA is found in human milk at levels ranging between 0.17% to 0.99% of the total fatty acids (FAs)⁽¹⁾
- It been estimated that the global mean DHA levels in human milk is ~0.32% of total FAs⁽²⁾

Breastfed infants DHA intake varies, given that the levels in the human milk are dependent on the mother's diet⁽¹⁾

DHA and brain

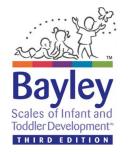
- Accumulation is high during the 3rd trimester and by birth, it's the predominant fatty acid in brain
 - The accumulation acceleration continues through to 2nd year of life $^{\left(1,\,2\right) }$



- DHA is a structural building block of cell membranes in the brain
 - The accumulation acceleration continues through to 2nd year of life^(1, 2)

Martinez M., 1992
Clandinin et al., 1980
McCormick D., 1993
FAO 2010

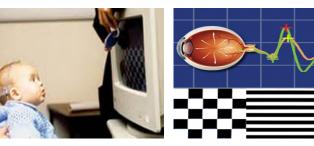
DHA and eye


• DHA is a predominant fatty acid in the retina⁽¹⁾

 ~50% of all fatty acids in retina - photoreceptor cells is DHA⁽²⁾

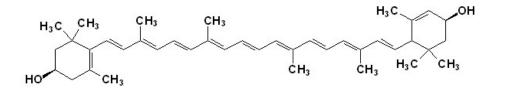
 In the retina DHA accumulation is essential for maturation & optimal visual function⁽¹⁾

Scientific evidence on DHA



 Clinically DHA has been demonstrated to impact both brain and visual functions⁽¹⁻⁷⁾

Visual Evoke Potential


measures the activity of the visual system

DHA is regarded as conditionally essential, especially early in life, due to the low ability in humans to convert it's precursor alpha-linolenic acid to DHA^(8, 9)

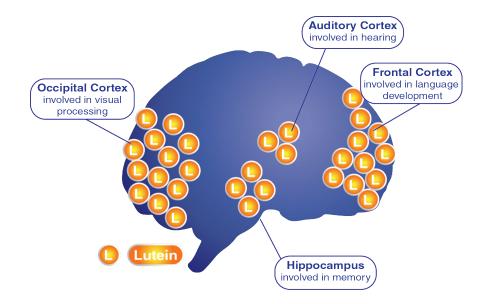
1. Hoffman et al., 2000; 2. Guesnet et al., 2011; 3. EFSA 2009; 4. Birch et al., 2010; 5. Birch et al., 2011; 6. Drover et al., 2011; 7. Birch et al., 2000; 8. FAO 2010; 9. Pawlosky et al., 2001.

Lutein in breast milk

 Breast milk levels have been shown to be dependent on maternal dietary intake⁽¹⁾

Country	Breast milk levels ug/L		
Mexico	36.1 ± 17.6		
Philippines	15.4±14.6		
Oman	29.0 ± 18.9		
All countries	25.2 ± 18.9		

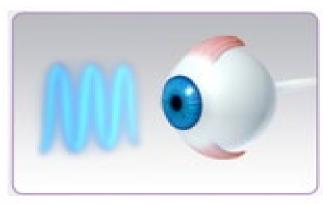
• Lutein is a carotenoid that plays an important role as an antioxidant⁽²⁻⁴⁾

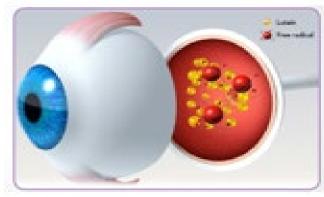

1. Pramuk et al., 2010

2. Johnson E., 2002

3. Winkler et al., 1999

4. Alves-Rodrigues & Shao 2004


Lutein and brain


- Lutein is a major carotenoid found in the brain⁽¹⁾
- In infants its been isolated from brain regions associated with cognition^(2, 3)

Craft et al., 2004
Vishwanathan et al., 2011
Vishwanathan et al., 2014

Lutein and eye

Absorb potential damaging light

Lutein protect against oxidation

 Highly accumulated in the inner retina known to protect the eye from harmful light⁽¹⁾

 Found in these high lipids areas, as an antioxidant it's been suggested to protect these areas against oxidative stress⁽¹⁾

Scientific evidence on lutein

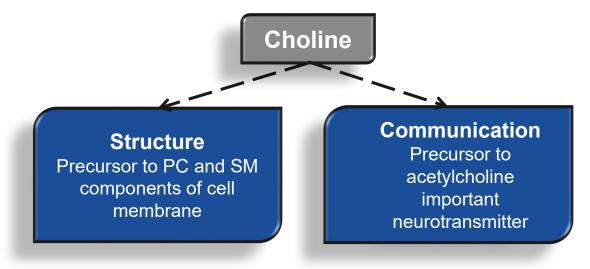
- Early in life mode of feeding may influence lutein bioavailabity, whereby at least about ~4 times more lutein has to be in formula as compared to mean levels in breast milk to support similar infant plasma levels⁽¹⁾
- In young adults 18-25yrs lutein mix supplementation resulted in increased macular pigment optical density and visual performance⁽²⁾
- In subjects ≥50 yrs, lutein composition in neural tissue and macular pigment had a positively correlated with cognitive function⁽³⁻⁶⁾

1. Bettelr et al., 2010; 2. Stringham et al., 2017; 3. Jonhnson et al., 2013.; 4. Vishwanathan et al., 2014; 5. Feeney et al., 2013; 6. Renzi et al., 2014;

HO C H_2 CH_3 H_2 CH_3 CH_3

Choline in breast milk

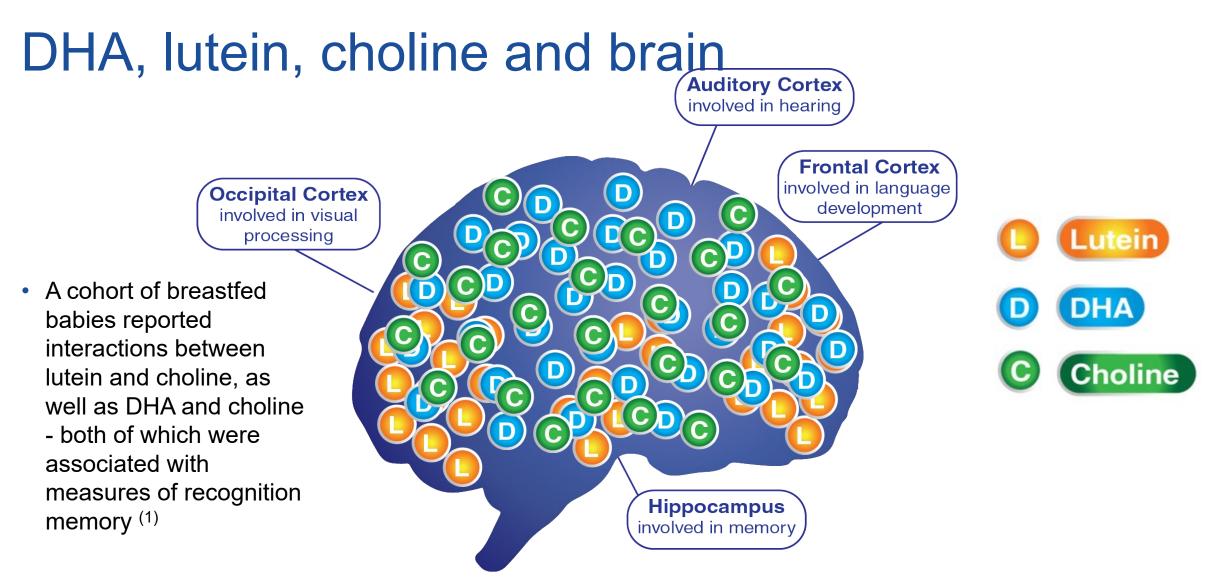
• Human milk levels have been reported to range with a mean estimated to be 160 mg/ $L^{(1, 2)}$


Human milk Sample	n	Total Choline µmol/L	Total Choline mg/L
Colostrum (0- 2 days	21	676 ± 35	70.42 ± 3.64
Mature milk			
12 – 180 days	95	1476 ± 48	153.75 ± 5
12 – 28 days	14	1595 ± 82	166.15 ± 8.54
75 – 90 days	12	1441 ± 84	150.12 ± 8.75
165 – 180 days	11	1349 ± 105	140.53 ± 10.94

 A water soluble vitamin with 3 main physiological functions, cell structure integrity, signaling role and a major methyl donor for methylation one of the key driver for biological reactions in the body^(3, 4)

^{1.} IOM 1998; 2. Ilcol et al., 2005; 3. Zeisel S., 2000; 4. Glier et al., 2014

Choline and brain


- Within the brain choline can be found incorporated into phosphatidylcholine (PC) and sphingomyelin (SM) which are components of cell membranes
- Choline is a precursor to acetylcholine a neurotransmitter, that travels across the synapse transmitting signals between neurons

Zeisel S., 2000
Zeisel S., 2006
Blokland A., 1996

Scientific evidence on choline

- Maternal choline status in the first half of pregnancy has been associated with later cognitive development in healthy term-born infants⁽¹⁾
- In toddlers, plasma betaine concentration (a product of choline oxidation) was positively associated with better visual-motor development⁽²⁾
- In adult and aged population cohort choline intake was related to better cognitive performance^(3,4)

1. Cheatham & Sheppard 2015.

Adequate & balanced nutrition is critical to support rapid brain growth, development and long term cognitive abilities

DHA support brain/eye development and functional outcomes

Lutein an antioxidant protects both the brain and the eye

Choline a component of PLs vital for cell membrane and has a role in cell signaling, facilitating memory

DHA, lutein, and choline are found in the brain and may work in complement/together to support its development and function, both of which are vital for learning

References

- Alves-Rodrigues A, Shao A. The science behind lutein. Toxicology Letters. 2004;150:57-83.
- Anderson RE, Benolken RM, et al. Proceedings: Polyunsaturated fatty acids of photoreceptor membranes. Exp Eye Res. 1974;18(3):205-213
- Birch E, Carlson S, Hoffman D, et al. The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am J Clin Nutr. 2010;91(4):848-859.
- Birch E, Castañeda Y, Wheaton D, et al. Visual maturation of term infants fed long chain polyunsaturated fatty acid supplemented or control formula for 12 mo. Am J Clin Nutr. 2005;81(4):871-879.
- Birch E, Garfield S, Hoffman D, et al. A randomized controlled trial of early dietary supply of long chain polyunsaturated fatty acids and mental development in term infants. Dev Med Child Neurol. 2000;42(3):174-181.
- Birch E, Hoffman D, Uauy R, et al. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res. 1998;44(2):201-209.
- Birch E, Garfield S, Castañeda Y, et al. "Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum Dev. 2007;83(5):279-284.
- Blokland A. Acetylcholine: a neurotransmitter for learning and memory? Brain Research Reviews. 1996;21:285-300
- Brenna J, Varamini B, Jensen R., et al. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85:1457-64.
- Carlson SE. Docosahexaenoic acid supplementation in pregnancy and lactation. Am J Clin Nutr. 2009;89(suppl):678S-84S.
- Cheatham C, Sheppard K, Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients. 2015;7:9079–9095.
- Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum Dev. 1980;4(2):131-138.
- Craft N, Haitema T, Garnett K, et al. Carotenoid, tocopherol, and retinol concentrations in elderly human brain. J Nutr Health Aging. 2004;8(3):156-62.
- Drover J, Hoffman D, Castañeda Y, et al. Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum Dev. 2011;87(3):223-230.
- EFSA. DHA and ARA and visual development. Scientific substantiation of a health claim related to docosahexaenoic acid (DHA) and arachidonic acid (ARA) and visual development pursuant to Article14 of Regulation (EC) No 1924/2006. The EFSA Journal. 2009;941:1-14.
- EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal. 2010;8:1461-1568.
- FAO. Fats and Fatty Acids in Human Nutrition. Rome. Food and Agriculture Organization, WHO. 2010; ISSN 0254-4725.
- Feeney J, Finucane C, Savva G, et al. Low macular pigment optical density is associated with lower cognitive performance in a large, population-based sample of older adults. Neurobiol Aging. 2013;34:2449–2456
- Glier M, Green T, Devlin A. Methyl nutrients, DNA methylation, and cardiovascular disease. Mol Nutr Food Res. 2013;00:1–11.
- Guesnet P, Alessandri J. Docosahexaenoic acid (DHA) and the developing central nervous system (CNS) e Implications for dietary recommendations. Biochimie. 2011;93:7-12.
- Hoffman DR1, Birch EE, Birch DG, et al. Impact of early dietary intake and blood lipid composition of long-chain polyunsaturated fatty acids on later visual development. JPGN. 2000;31(5):540-553.
- Ilcol Y, Ozbek R, Hamurtekin E, Ulus I. Choline status in newborns, infants, children, breast-feeding women, breast-fed infants and human breast milk. J Nutr Biochem. 2005;16(8):489-499...
- Innis SM. Dietary (n-3) Fatty Acids and Brain Development. J Nutr. 2007;137:855-9.

References

- IOM. Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline Washington DC, National Academy Press: 1998;390-422.
- Johnson E. The Role of Carotenoids in Human Health. Nutrition in Clin Care. 2002;5(2):56-65.
- Johnson E, Vishwanathan R, Johnson M, et al. Relationship between serum and brain carotenoids, α-tocopherol, and retinol concentrations and cognitive performance in the oldest old from the georgia centenarian study. J Aging Res. 2013;2013:951786
- Lien EL, Hammond BR. Nutritional influences on visual development and function. Prog Retin Eye Res. 2011;30(3):188-203.
- Martinez M. Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr. 1992;120(4 Pt 2):S129-138.
- McCormick D. The Meaning of Nutritional Essentiality in Today's Context of Health and Disease. Nutritional Essentiality: A Changing Paradigm. Columbus, Abbott Laboratories. 1993;12:11-15.
- Nurk E, Refsum H, Bjelland I, et al. Plasma free choline, betaine and cognitive performance: The Hordaland health study. Br J Nutr. 2013;109:511–519.
- Pawlosky RJ, Hibbeln JR, et al. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res. 2001;42(8):1257-1265;
- Poly C, Massaro JM, Seshadri S, et al. The relation of dietary choline to cognitive performance and white-matter hyperintensity in the Framingham Offspring Cohort.. Am J Clin Nutr. 2011;94(6):1584-91
- Pramuk K, Burgher A, Ramirez-Mayans JA, Montijo-Barrios E, Sablan B, Trabulsi J, Wali Y, DeRusso PA. Lutein concentrations in maternal diet, human milk and infant plasma in mothers-infant pairs: A multinational study. Journal Compilation 2010 Blackwell Publishing Ltd, Child: care, health and development. 2010;36 (Suppl. 1):87.
- Renzi L, Dengler M, Puente A, et al. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging. 2014;35:1695–1699
- Snodderly D: Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr. 1995;62(6 suppl.):1448S-1461S.
- Stringham JM, Stringham NT, O'Brien KJ. Macular Carotenoid Supplementation Improves Visual Performance, Sleep Quality, and Adverse Physical Symptoms in Those with High Screen Time Exposure. Foods. 2017;6(7). pii: E47.
- Vishwanathan R, Kuchan M, Johnson E. Lutein is the predominant carotenoid in the infant brain. 16th International Symposium on Carotenoids. 2011. Krakow, Poland. http://www.ib.uj.edu.pl/abc/pdf/suppl53_1/sup_53_s1.pdf.
- Vishwanathan R, Kuchan MJ, Sen S, Johnson EJ. Lutein and preterm infants with decreased concentrations of brain carotenoids. J Pediatr Gastroenterol Nutr. 2014;59(5):659-65.
- Renzi L, Dengler M, Puente A, et al. Relationships between macular pigment optical density and cognitive function in unimpaired and mildly cognitively impaired older adults. Neurobiol Aging. 2014;35:1695–1699
- Wiedeman AM, Chau CMY, Grunau RE et al. Plasma Betaine Is Positively Associated with Developmental Outcomes in Healthy Toddlers at Age 2 Years Who Are Not Meeting the Recommended Adequate Intake for Dietary Choline.. J Nutr. 2018;148(8):1309-1314.
- Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999;5:32.
- Yuhas R, Pramuk K et al. Human milk fatty acid composition from nine countries varies most in DHA. Lipids. 2006;41(9):851-858.
- · Zeisel S. Choline: Needed for Normal Development of Memory. Journal of the American College of Nutrition. 2000;19(5):528S-531S.
- Zeisel S. The fetal origins of memory: The role of dietary choline in optimal brain development. The Journal of Pediatrics. 2006;149(5):S131-S136.

THANK YOU