Human milk oligosaccharides (HMOs) role in neurodevelopment

Jonas Hauser, PhD, Brain Health, Nestlé Research

25 March 2020
Human Milk Oligosaccharides (HMOs): Role in neurodevelopment

Jonas Hauser, PhD, Specialist in Cognition
Brain Health, Nestlé Research
Evolution of Milk: a story 310 million years in making

- Earliest indication in the Pennsylvanian period, approximately 310 million years ago
- Ancestors of mammals laid eggs with parchment-like shells intolerant to desiccation and therefore dependent on glandular skin secretions for moisture
- Today few egg laying mammals still exist
- This skin secretion (intended for moisture and antimicrobial properties) evolved into a nutrient-rich milk long before mammals, taking a role of vehicle of nutrients to the new-borns

Main categories of human milk components

- **Bioactive Components**
 - HMOs
 - Key features: Not digested, No nutritive value, Support microbiota
 - Key functions: SUPPORT BRAIN DEVELOPMENT

- **Nutritive Components**
 - Lactose, Proteins, Fat
 - Key features: Mainly digested, Nutritive value
 - Key functions: SUPPORT HEALTHY GROWTH AND DEVELOPMENT
Gross composition of breast milk

Human breast milk

Solid components

- Proteins (8 g/L)
- HMOs (5-15 g/L)
- Lipids (40 g/L)
- Lactose (70 g/L)

HMOs

- Core structures
 - 5 to 15 g/L in breast milk
 - >130 structures described, of which <20 make up the bulk
 - Most HMOs are not generally present in farmed animal milks
- Fucosyl-HMOs
- Sialyl-HMOs (n=287)

Macro-, micro-nutrients and HMOs

Water

Gross compositional comparison to bovine and formula milk

Adapted from Anna Petherick, Nature volume 468, pages S5–S7 (23 December 2010); Samuel and Binia et al., 2019, Scientific Reports
Which factors influence breastmilk HMO composition?

Maternal parameters

• Genetics (Secretor-, Lewis gene)
• Lactation stage
• Physiological status
• Mode of delivery
• Infant gestational age
• Diet

Important to understand for observational association studies of HMOs with breastfed infant clinical parameters.
2’-Fucosyllactose breast milk levels at 1 month of age is associated with cognitive development at 24 months

Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers

Paige K. Berger1, Jasmine F. Ploes2, Robertson B. Jones3, Tanya L. Alderete3, Chloe Yonemitsu3, Maria Poulsen3, J. Hoon Ryu1, Bradley S. Peterson1, Lara Boda2, Michael I. Goran3,4

1 Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America, 2 Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States of America, 3 Department of Pediatrics and Mother-Milk-Infant Center of Research-Excellence, University of California, San Diego, La Jolla, California, United States of America, 4 University Center for Excellence in Developmental Disabilities, Children’s Hospital Los Angeles, Los Angeles, California, United States of America

Berger et al. PlosOne Feb 2020
Early life supplementation with 2’-Fucosyllactose improves long-term potentiation (LTP) via the Gut-Brain Axis in preclinical model

Dietary 2’-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents

Vazquez et al. PlosOne Nov 2016
Presence of 6′Sialyllactose during lactation promotes attention and memory in preclinical model

Spatial memory
(Barnes maze)

Attention
(attention set shifting task)

Myelination
(gene expression relative to control)

Hauser et al. ESPGHAN 2019 and unpublished results
HMOs modulation of neurodevelopment: Mode of actions

- **Microbiota**: Modulation of microbiota composition
- **Vagus Nerve**: Modulation of vagal tone by HMOs
- **Myelination**: Modulation of myelination by sialylated HMOs

Pictures obtained from wikipedia and wikiversity under creative common licence
Thank you for your attention